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Abstract:  The Stone - Čech compactification βS  of  a discrete semigroup S is the set of ultrafilters on 𝑆 on which the binary 

operation can be extended uniquely making it a compact right topological semigroup. The idempotent elements in 𝛽𝑆 have some extra 

ordinary algebraic structures which are applied in combinatorial problems, especially in Ramsey theory. The idempotent elements of  

𝛽𝑆, which are not in 𝑆  induced a topology on the group 𝑆 which are left invariant. In this paper we study subspace topology on a 

subgroup 𝑇 of this left invariant topological semigroup and topology induced by idempotent in  the Stone - Čech compactification βT. 
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1 Introduction: 

Given a nonempty set 𝑋, a family 𝔉 of subsets of 𝑋 will be a filter on 𝑋 if  ∅ ∉  𝔉, 𝐴 ∩ 𝐵 ∈ 𝔉 when 𝐴, 𝐵 ∈ 𝔉 and if 𝐴 ∈

𝔉 and 𝐴 ⊆ 𝐵 then 𝐵 ∈ 𝔉. A filter 𝔘 is called an ultrafilter on 𝑋 if   𝔘 is not properly contained in any filter. An ultrafilter 𝔘 which 

contains a singletone set {𝑥0} as a member is called a principal ultrafilter. We denote this ultrafilter by 𝑥0.  For a principal ultrafilter 𝔘,  

⋂𝔘 = singletone set. For further studies on ultrafilters we refer [3]. A compactification of a space 𝑋 is a compact Hausdorff space 𝑌 

such that there is a topological embedding  𝑒: 𝑋 → 𝑌 with 𝑒(𝑋) dense in 𝑌. Whereas  the Stone - Čech compactification of a 

Tychonoff space  𝑋 is a compactification  𝛽𝑋 having the property that: if 𝑓: 𝑋 → 𝑌 is a continuous function on any compact Hausdorff 

space 𝑌 then there is a unique continuous function  𝑓 ∶ 𝛽𝑋 → 𝑌 with  𝑓|𝑋 = 𝑓.The Stone - Čech compactification of a Tychonoff 

space  𝑋 taking  maximal Z-ideals of 𝑋 as points has been studied in [6] which is equivalent for a discrete space 𝑋 by taking all its 

ultrafilters.For a discrete semigroup (𝑆, ⋅) its Stone - Čech compactification 𝛽𝑆 consisting of all ultrafilters of 𝑆 is topologized by 

taking the collection {�̂� ∶      𝐴 ⊆ 𝑆} as a base for the topology on 𝛽𝑆, where �̂� = {𝑝 ∈ 𝛽𝑆:   𝐴 ∈ 𝑝}. It is a routine matter to check that 

the above mentioned base is a base for the closed sets also. Thus the Stone - Čech compactification 𝛽𝑆 of a discrete semigroup 𝑆 is a 

zero- dimensional space. We can identify each element 𝑠 ∈ 𝑆 with a principal ultrafilter, so that 𝑆 ⊆  𝛽𝑆.  Then the semigroup 

operation  ⋅ on 𝑆 can be extended to a binary operation on βS as follows: for s ∈ S, q ∈ βS,   s ⋅ q =  λs̃(q) where λs̃ ∶ βS → βS  is the 

continuous extension of λs: S → S ⊆ βS  defined by  𝜆𝑠(𝑥 ) =  𝑠 ⋅ 𝑥 . Now for  𝑝 , 𝑞 ∈ βS,   𝑝 ⋅ 𝑞 =  𝜌�̃�(𝑞), where 𝜌�̃� ∶ 𝛽𝑆 → 𝛽𝑆 is the 

continuous extension of 𝜌𝑞 : 𝑆 → 𝛽𝑆   defined by  𝜌𝑞(𝑥 ) =  𝑥 ⋅ 𝑞 and (𝛽𝑆,⋅) is also a semigroup. Also it is a compact right topological 

(follows form [2]) semigroup. From Elli’s theorem [2] it is clear that  (𝛽𝑆,⋅) contains an idempotent element. 
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 We can use the following definitions and results from semigroup theory.  In a semigroup (𝑆,⋅) an element 𝑥 ∈ 𝑆 is said to be 

invertible if there is(unique) 𝑥 ′ ∈ 𝑆 such that 𝑥 = 𝑥𝑥 ′𝑥 and 𝑥 ′ =  𝑥′𝑥𝑥′ and 𝑥𝑥 ′ =  𝑥′𝑥.  The element 𝑥 𝑥 ′  is an idempotent element 

denoted by 𝑥0.  A subset 𝐼 ⊆ 𝑆 is a left(right) ideal of  𝑆 if 𝑆𝐼 ⊆ 𝑆  (𝐼𝑆 ⊆ 𝑆). It is called an ideal if it is both left and right ideal of 𝑆.  

Using Zorn’s lemma we can say that every left (right)  ideal contains a minimal left(right)  ideal. The smallest ideal (if exists) of a 

semigroup (𝑆,⋅) is denoted by 𝐾(𝑆) and it is the intersection of a minimal left ideal and a mainimal right ideal. The set of idempotents 

of 𝑆 is denoted by 𝐸(𝑆). 

If  (𝑆, ⋅) is a semigroup with a topology 𝜏 then its topological center is 𝛬 (𝑆) = {𝑎 ∈ 𝑆 ∶   𝜆𝑎 is a continuos mapping}. For the 

Stone - Čech compactification of a discrete semigroup (𝑆, ⋅),   𝑆 ⊆  𝛬 (𝑆) .  

A topological semigroup (𝑆, 𝜏) is a pair where 𝑆 is a semigroup,  𝜏 is a topology on 𝑆 and the binary operation is continuous. It is 

a topological inverse semigroup if S is an inverse semigroup and the map  𝑥 → 𝑥′ is continuous. In a topological semigroup (𝑆, 𝜏) the 

closure of any (left, right) ideal is also an (left, right) ideal. 

 A homomorphism between two semigroups 𝑆  𝑎𝑛𝑑 𝑇 is a mapping 𝜓: 𝑆 → 𝑇 satisfying  𝜓(𝑎𝑏) =  𝜓(𝑎)𝜓(𝑏). If it is bijective 

then it is an isomorphism. An isomorphism : 𝑆 → 𝑇 , where  𝑆   𝑎𝑛𝑑 𝑇 are semigroups endowed with topologies is called a topological 

isomorphism if it is a homeomorphism also. Henceforth we will consider the discrete topology on the semigroup (𝑆, ⋅). 

 Definition 1.1 Suppose (𝑆,   ⋅) is a discrete inverse semigroup,  𝐴 ⊆ 𝑆 and 𝑝 ∈ 𝛽𝑆.  Define 𝐴−1 = {𝑥 ′:     𝑥 ∈ 𝐴}, 𝑝′ = {𝐴−1 ⊆ 𝑆 ∶

  𝐴 ∈ 𝑝 }. 

Obviously (𝐴−1)−1  = 𝐴 and (𝑝′)′ =  𝑝. 

Proposition 1.2  𝑝 ∈ 𝛽𝑆 if and only if 𝑝′ ∈ 𝛽𝑆. 

Proof: Suppose  𝑝 ∈ 𝛽𝑆. Clearly then ∅ ∉ 𝑝′. Now if 𝐴, 𝐵 ∈ 𝑝′  then  𝐴−1, 𝐵−1 ∈ 𝑝. p being an ultrafilter,  𝐴−1 ∩ 𝐵−1 ∈ 𝑝. Then 

(𝐴 ∩ 𝐵) = (𝐴−1 ∩ 𝐵−1)−1 ∈ 𝑝′. Again if 𝐴 ∈ 𝑝′ and 𝐴 ⊆  𝐵 then  𝐴−1 ⊆ 𝐵−1 implies   𝐵−1 ∈ 𝑝 implies 𝐵 ∈ 𝑝′. So 𝑝′ is a filter on S. 

Suppose 𝔉 be a filter such that 𝑝′ ⊆ 𝔉. Then 𝑝 = (𝑝′)′ ⊆ 𝔉′. Since 𝑝 is an ultrafilter, 𝔉′ =  𝑝 and hence 𝑝′ = 𝔉. 

Definition 1.3  Suppose (𝑆,   ⋅) is a discrete semigroup,  𝑌(⊆ 𝑆) is a subsemigroup of 𝑆. For 𝑝 ∈ 𝛽𝑆 ∩ �̂� , we define, 𝑝𝑌 = {𝐴 ∩ 𝑌 ∶

  𝐴 ∈ 𝑝 }. 

Proposition 1.4  𝑝𝑌 is an ultrafilter on 𝑌 and hence 𝑝𝑌 ∈ 𝛽𝑌.  

Proof: Since  𝑌 ∈ 𝑝, 𝐴 ∩ 𝑌 ≠ ∅ for all 𝐴 ∈ 𝑝. Suppose 𝐵 ∈ 𝑝𝑌 and 𝐵 ⊆ 𝐶 ⊆ 𝑌. Then 𝐵 = 𝐵1 ∩ 𝑌 for some 𝐵1 ∈ 𝑝. Then there is 

some  𝐶1 ⊇ 𝐵1 such that 𝐶 = 𝐶1 ∩ 𝑌. Clearly then 𝐶1 ∈ 𝑝 and so 𝐶 ∈ 𝑝𝑌.  Now if 𝐴, 𝐵 ∈ 𝑝𝑌  then  𝐴 = 𝐴1 ∩ 𝑌, 𝐵 = 𝐵1 ∩ 𝑌, for some 

𝐴1, 𝐵1 ∈ 𝑝.  𝑝 being an ultrafilter,  𝐴1 ∩ 𝐵1 ∈ 𝑝. Then (𝐴 ∩ 𝐵) = (𝐴1 ∩ 𝐵1) ∩ 𝑌 ∈ 𝑝𝑌 implies 𝑝𝑌 is a filter on 𝑌. Suppose 𝔉 be a filter 

on 𝑌 such that 𝑝𝑌 ⊆ 𝔉. Suppose 𝔉1 = {𝐴 ⊆ 𝑆: 𝐴 ∩ 𝑌 ∈ 𝔉}is a filter on 𝑆 containing 𝑝. Since 𝑝 is an ultrafilter, 𝔉1 =  𝑝 . Then  𝑝𝑌 =

𝔉, which implies 𝑝𝑌 is an ultrafilter on 𝑌. 

Definition 1.5  For a subsemigroup 𝑇 of the semigroup (𝑆, ⋅) the set {𝑝𝑇:   𝑝 ∈ 𝛽𝑆} is a set of ultrafilters on 𝑇 which will be denoted 

by 𝛽𝑆𝑇. 

Proposition 1.6   For a subsemigroup 𝑇 of the semigroup (𝑆, ⋅), 𝑐𝑎𝑟𝑑(𝛽𝑆𝑇) = 𝑐𝑎𝑟𝑑(𝛽𝑆 ∩ �̂�). 

Proof: Suppose 𝑓: 𝛽𝑆 ∩ �̂� →  𝛽𝑆𝑇 be defined by 𝑓(𝑝) = 𝑝𝑇, ∀𝑝 ∈  𝛽𝑆 ∩ �̂� … … … (1).  

We shall show that 𝑓 is a bijection. Suppose 𝑝, 𝑞 ∈ 𝛽𝑆 ∩ �̂� 𝑎𝑛𝑑 𝑝 ≠ 𝑞. Then there is some 𝐴 ∈ 𝑝  such that 𝐴 ∉ 𝑞. Then 𝐴 ∩ 𝑇 ∈ 𝑝𝑇 

but 𝐴 ∩ 𝑇 ∉ 𝑞𝑇 showing that 𝑓 is injective. Again if  𝑟 ∈ 𝛽𝑆𝑇 then 𝑟𝑆 = {𝐴 ⊆ 𝑆 ∶ 𝐴 ∩ 𝑇 ∈ 𝑟} is an ultrafilter in 𝑆 and (𝑟𝑆)𝑇 = 𝑟. So 𝑓 

is an onto mapping. 

Theorem 1.7 If 𝑇 is a subsemigroup of a discrete semigroup 𝑆 then the mapping 𝑓: 𝛽𝑆 ∩ �̂� →  𝛽𝑆𝑇 (⊆ 𝛽𝑇) as defined in 

(1) 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1.6 is a homeomorphism. 

Proof: Using proposition 1.6, to prove the theorem it is only to show that 𝑓 𝑖𝑠 𝑎 continuous  open map. 

If 𝑝 ∈ 𝛽𝑆 ∩ �̂� and 𝑝𝑇 ∈ 𝑈 ̂ ⊆ 𝛽𝑆𝑇 then 𝑈 ∈ 𝑝𝑇 and so 𝑈 = 𝐴 ∩ 𝑇 , for some 𝐴 ∈ 𝑝. Clearly then �̂� ∩ �̂� is an open neighbourhood of 𝑝 

and 𝑓(�̂� ∩ �̂�) ⊆ 𝑈 ̂ implies that 𝑓 is continuous at 𝑝. Now if �̂� ∩ �̂�  is an open set in 𝛽𝑆 ∩ �̂� then 𝑓(�̂� ∩ �̂�) = (𝐴 ∩ 𝑇)𝛽𝑇
̂  is an open 

set in 𝛽𝑇 implies 𝑓 is an open map. 
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Henceforth we use the symbol �̂� for 𝛽𝑆 ∩ �̂�. 

From the above theorem (1.7) it is clear that �̂� is topologically embedded in 𝛽𝑆𝑇. 

Notation: For a subset 𝐴 of a semigroup (𝑆,   ⋅) if 𝑠 ∈ 𝑆 then  

(a) 𝑠−1𝐴 = {𝑡 ∈ 𝑆 ∶     𝑠 ⋅ 𝑡 ∈ 𝐴} 

(b) 𝐴 𝑠−1 = {𝑡 ∈ 𝑆 ∶     𝑡 ⋅ 𝑠 ∈ 𝐴}. 

The following theorem follows from the continuity of  𝜆�̃� and 𝜌�̃� . 

Theorem 1.8[1] For a discrete semigroup (𝑆,   ⋅) if 𝑥 ∈ 𝑆, 𝑝, 𝑞 ∈ 𝛽𝑆 then  

(a) 𝑥 ⋅ 𝑝 = {𝐴 ⊆ 𝑆 ∶ 𝑥−1𝐴 ∈ 𝑝} 

(b) 𝑝 ⋅ 𝑞 = {𝐴 ⊆ 𝑆 ∶ {𝑥 ∈ 𝑆:     𝑥−1𝐴 ∈ 𝑞} ∈ 𝑝}. 

Theorem 1.9 Suppose 𝑇 be a sub semigroup of the discrete semigroup (𝑆,   ⋅), 𝑥 ∈ 𝑇, 𝑝, 𝑞 ∈ �̂�. Let ⋆ be the binary operation on 

𝛽𝑇 extended from ⋅  on 𝑇. Then  

(a) (𝑥 ⋅ 𝑝)𝑇 = 𝑥 ⋆ 𝑝𝑇 

(b) (𝑝 ⋅ 𝑞)𝑇 = 𝑝𝑇 ⋆ 𝑞𝑇 

Proof : (a) Since 𝑇 ∈ 𝑝, 𝑥 ⋅ 𝑇 ∈ 𝑥 ⋅ 𝑝 . Also 𝑇 ⊇ 𝑥 ⋅ 𝑇. This implies 𝑇 ∈ 𝑥 ⋅ 𝑝. 

(b) Suppose 𝐴 ∈  (𝑝 ⋅ 𝑞)𝑇. Then 𝐴 = 𝐵 ∩ 𝑇 for some 𝐵 ∈ 𝑝. 𝑞. Let 𝐶 = {𝑥 ∈ 𝑆: 𝑥−1𝐵 ∈ 𝑞}. Then 𝐶 ∈ 𝑝. Now for any 𝑥 ∈ 𝑇 ∩ 𝐶, 

𝑥−1𝐴 ∈ 𝑞𝑇 implies {𝑥 ∈ 𝑇: 𝑥−1𝐴 ∈ 𝑞𝑇} ∈ 𝑝𝑇. Hence  𝐴 ∈ 𝑝𝑇 ⋆ 𝑞𝑇. Consequently (𝑝 ⋅ 𝑞)𝑇 = 𝑝𝑇 ⋆ 𝑞𝑇 

Definition 1.10 A topology 𝜏 on a semigroup (𝑆,⋅) is called a right(left) invariant topology if for every 𝑈 ∈ 𝜏 and  every                                         

𝑎 ∈ 𝑆, 𝑈𝑎 = {𝑢 ⋅ 𝑎 ∶ 𝑢 ∈ 𝑈} ∈ 𝜏 (𝑎𝑈 ∈ 𝜏). A topology is called invariant if it is both left and right invariant. 

 

        From the definition, it is clear that, if 𝜏 on a group (𝑆,⋅) is a right(left) invariant topology then (𝑆,⋅) is a right(left) topological 

group. Indeed we get stronger relation as follows from the theorem: 

Theorem 1.11 A topology 𝜏 on a group (𝐺,⋅) is left invariant if and only if for every 𝑎 ∈ 𝐺,  𝜆𝑎 is a homeomorphism, where 𝜆𝑎: 𝐺 →

𝐺  is defined by 𝜆𝑎(𝑔) =  𝑎 ⋅ 𝑔  ∀ 𝑔 ∈ 𝐺. 

Proof:  If 𝜏 is left invariant then for each 𝑎 ∈ 𝐺 and each open set 𝑈, 𝜆𝑎(𝑈) = 𝑎𝑈 is open implies 𝜆𝑎 is an open map.Again for any 

open set 𝑈 of 𝐺, 𝜆𝑎
−1(𝑈) =  𝑎−1𝑈 is also open showing that 𝜆𝑎 is continuous. 𝜆𝑎 being a bijective mapping, it is a homeomorphism. 

Conversely, suppose 𝜆𝑎 is a homeomorphism. Then 𝜏 is left invariant follows from the fact that 𝜆𝑎is an open mapping. 

 

    For constructions of left invariant topologies on an infinite group we use the following definitions from [1]. 

Definition 1.12 If 𝐺 is a discrete group with identity 𝑒 and 𝐶 ⊆ 𝐺∗ is a finite subsemigroup then define  

(a)   �̃� = {𝑥 ∈ 𝛽𝐺: 𝑥𝐶 ⊆ 𝐶}. 

(b)  𝜙 is the filter of subsets 𝑈 of 𝐺 for which 𝐶 ⊂ 𝑐𝑙(𝑈). 

(c)   �̃� is the filter of subsets 𝑈 of 𝐺 for which �̃� ⊂ 𝑐𝑙(𝑈). 

It is clear that �̃� is a semigroup and 𝑒 ∈ �̃�. Also 𝜙 = ∩ 𝐶 and  �̃� = ∩ �̃� . 

Definition 1.13  Suppose 𝜙 and �̃� are defined as in Definition 1.12. For any 𝑈 ∈ 𝜙, let  �̃� = {𝑎 ∈ 𝐺: 𝑎𝐶 ⊆  𝑐𝑙(𝑈)}. 

Then 𝑒 ∈ �̃� ∈ �̃� and the family {�̃�: 𝑈 ∈ 𝜙} is a base for the filter �̃�. 
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It can be easily verified that the family 𝔅 = {𝑎 �̃�: 𝑎 ∈ 𝐺, 𝑈 ∈ 𝜙} is a base for some topology on 𝐺.  

Theorem 1.14 [1] For any discrete group (𝐺,⋅) there is a left invariant topology generated by 𝔅,  as defined in Def 1.13 on 𝐺 for 

which  �̃� is the filter of neighbourhoods of 𝑒. Furthermore, 𝐺 will be zero dimensional if 𝑥𝐶 = 𝐶 for every 𝑥 ∈ �̃�,  

 

Theorem 1.15 [1] If  𝑥𝐶 = 𝐶 for every 𝑥 ∈ �̃�, then the following are equivalent: 

(a) The topology defined in Theorem 1.14 is Hausdorff. 

(b) {𝑥 ∈ 𝐺: 𝑥𝐶 ⊆ 𝐶} = {𝑒}. 

(c) {𝑒} = ∩ �̃�. 

Theorem 1.16 [1] If 𝐺 has no nontrivial finite subgroup, then ∩ �̃� = {𝑒}. 

Example 1.17  Suppose 𝑝 be an idempotent in ℚ∗. Define �̃�𝑝 = {𝑥 ∈ 𝛽ℚ: 𝑥 + 𝑝 = 𝑝}.Then 𝜙 = {𝑈 ⊆ ℚ: 𝐴 ∩ 𝑈 ≠ ∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ∈

𝑝} = 𝑝 from the properties of an ultrafilter. Now, for any 𝑈 ∈ 𝜙,      �̃� = {𝑟 ∈ ℚ:     𝑟 + 𝑝 ∈  𝑐𝑙(𝑈)}     = {𝑟 ∈ ℚ:   (−𝑟 +  𝐴) ∩ 𝑈 ≠

∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ∈ 𝑝}.The family {𝑎 + �̃�: 𝑎 ∈ ℚ, 𝑈 ∈ 𝑝} is a base for the left invariant topology on ℚ generated by the idempotent 𝑝. As 

ℚ is commutative under addition, it follows immediately that the topology is an invariant topology on ℚ.     

From Theorem 1.14 and 1.15 the following theorem follows immediately: 

Theorem 1.18 If 𝐺 is a discrete group with identity 𝑒, there is a left invariant topology on 𝐺 with a basis of clopen sets such that �̃� is 

the filter of neighbourhoods of 𝑒. Further more this topology is Hausdorff if 𝐺 has no nontrivial finite subgroups. 

 Definition 1.19 [6]  A topological space is said to be extremally disconnected if closure of every open set is open. 

Theorem 1.20[6] If 𝑆 is a discrete space then 𝛽𝑆 is extremally disconnected.   

Lemma 1.21[1] For a discrete semigroup (𝑆, ⋅) if 𝑝 is an idempotent in 𝛽𝑆 then 𝑆 ⋅ 𝑝 is extremally disconnected subspace of 𝛽𝑆. 

Theorem 1.22 [1] Suppose 𝑝  be an idempotent in 𝑆∗ where (𝑆, + ) is an infinite discrete group with the identity 0.  Then there is a 

left invariant zero dimensional Hausdorff topology on 𝑆 such that the filter  �̃� of neighbourhoods of 0 consists of 𝑈(⊆ 𝑆) for which   

{𝑥 ∈ βS: 𝑥 + 𝑝 = 𝑝} ⊆ 𝑐𝑙𝛽𝑆𝑈. This topology is extremally disconnected and is the same as the weak topology on  𝑆 induced by the 

mapping (𝜌𝑝)
|𝑆

: 𝑆 → 𝑆∗. Furthermore, if (𝜌𝑝)
|𝑆

 and (𝜌𝑞)
|𝑆

 induce the same topology on 𝑆 then  𝑝 + 𝛽𝑆 =   𝑞 + 𝛽𝑆. 

The topology as in Theorem 1.22 is called the left invariant topology on 𝑆 induced by the idempotent 𝑝 and will be denoted by 𝜏𝑝. 

2. Topology on a subgroup of a discrete group 𝑮 induced by the idempotents 

 In this section we study the left invariant topologies induced on the subgroup (𝐻, +) by idempotents in 𝐻∗ by two ways. One is 

by the subspace topology of 𝐺 which is induced by an idempotent element 𝑝 of 𝐺∗ and the other is the right invariant topology on 𝐻 

induced by the idempotent 𝑝𝐻  of 𝐻∗. 

Theorem 2.1 Let (𝐺, ⋅) be a group endowed with a left invariant topology 𝜏. Then any subgroup 𝐻 of the group  (𝐺, ⋅) is also left 

invariant with respect to the subspace topology of  𝜏. 

Proof: Suppose 𝑈 ∈ 𝜏𝐻, the subspace topology on 𝐻 and 𝑎 ∈ 𝐻. Then 𝑈 = 𝑉 ∩ 𝐻 for some 𝑉 ∈ 𝜏. Since 𝜏 is left invariant 𝑎 ⋅ 𝑉 ∈ 𝜏. 

We first show that 𝑎 ⋅ 𝑈 = (𝑎 ⋅ 𝑉) ∩ 𝐻. Clearly 𝑎 ⋅ 𝑈 ⊆ (𝑎 ⋅ 𝑉) ∩ 𝐻.  Suppose 𝑥 ∈ (𝑎 ⋅ 𝑉) ∩ 𝐻. Then 𝑥 =  𝑎 ⋅ 𝑣 for some 𝑣 ∈ 𝑉. This 

implies 𝑣 = 𝑎−1 ⋅ 𝑥 ∈ 𝐻. Thus  𝑣 ∈ 𝑉 ∩ 𝐻 showing that 𝑥 ∈ 𝑎 ⋅ (𝑉 ∩ 𝐻) which implies (𝑎 ⋅ 𝑉) ∩ 𝐻 ⊆ 𝑎 ⋅ 𝑈. Consequently 𝑎 ⋅ 𝑈 =

(𝑎 ⋅ 𝑉) ∩ 𝐻 and so 𝑎 ⋅ 𝑈 ∈  𝜏𝐻. 

Theorem 2.2 Let (𝑌, 𝜎) be a topological space and 𝜏  be the topology on 𝑋 induced by the mapping 𝑓: 𝑋 → 𝑌. Let 𝑆 be a nonempty 

subset of 𝑋. Then the subspace topology of  𝜏 on 𝑆 is same as the topology induced by 𝑓|𝑆: 𝑆 → 𝑌 on 𝑆. 

Proof: Suppose 𝑈 be a basic open set of (𝑆, 𝜏𝑆), the subspace topology on 𝑆. Then 𝑈 = 𝑉 ∩ 𝑆 for some basic open set  𝑉 ∈ 𝜏. Since 𝜏 

is induced by the mapping 𝑓: 𝑋 → 𝑌,  𝑉 = ⋂   𝑓−1(𝑊𝑖)𝑛
𝑖=1 , for some 𝑊𝑖 ∈ 𝜎 and for some 𝑛 ∈ ℕ. Then  𝑈 = (⋂   𝑓−1(𝑊𝑖)𝑛

𝑖=1 ) ∩ 𝑆 =

 ⋂ (  𝑓−1(𝑊𝑖)𝑛
𝑖=1 ∩ 𝑆) =  ⋂   𝑓|𝑆

−1
(𝑊𝑖)𝑛

𝑖=1  , which implies that 𝑈 is a basic open set with respect to the topology induced by 𝑓|𝑆: 𝑆 →

𝑌 on 𝑆. Again if 𝑈 is a basic open set with respect to the topology induced by 𝑓|𝑆: 𝑆 → 𝑌 on 𝑆, then 𝑈 = ⋂   𝑓|𝑆
−1

(𝑊𝑖)𝑛
𝑖=1 =

 ⋂ (  𝑓−1(𝑊𝑖)𝑛
𝑖=1 ∩ 𝑆) = (⋂   𝑓−1(𝑊𝑖)𝑛

𝑖=1 ) ∩ 𝑆 = 𝑉 ∩ 𝑆 where 𝑉 = ⋂   𝑓−1(𝑊𝑖)𝑛
𝑖=1  is a basic open set of 𝜏. Consequently the subspace 

topology of  𝜏 on 𝑆 is same as the topology induced by 𝑓|𝑆: 𝑆 → 𝑌 on 𝑆. 
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Theorem 2.3 Let (𝐺, +) be an infinite group with the identity 0 and 𝐻 be an infinite subgroup of  𝐺. Then  𝑝 ∈ 𝐺∗ ∩ �̂� is an 

idempotent element of 𝛽𝐺 if and only if 𝑝𝐻(as defined by definition 1.3)  is an idempotent element of  𝛽𝐻 ∖ 𝐻. 

Proof : Suppose  𝑝  be an idempotent  element of 𝛽𝐺 . Since 𝑝 ∈ 𝐺∗, 𝑝 is not a principal ultrafilter and so 𝑝𝐻  is a non principal 

ultrafilter of  𝛽𝐻. Then from Theorem 1.9  𝑝𝐻 = (𝑝 + 𝑝)𝐻 = 𝑝𝐻 + 𝑝𝐻 , it follows that 𝑝𝐻  is an idempotent element of  𝛽𝐻 ∖ 𝐻. 

Conversely, let  𝑝𝐻  be an idempotent element of  𝛽𝐻 ∖ 𝐻. Then 𝑝 ∈ 𝐺∗ and (𝑝 + 𝑝)𝐻 = 𝑝𝐻 + 𝑝𝐻 = 𝑝𝐻. Then from Proposition 1.6 it 

follows that 𝑝 + 𝑝 = 𝑝. Consequently 𝑝 ∈ 𝐺∗ ∩ �̂� is an idempotent element of 𝛽𝐺. 

Theorem 2.4 Let (𝐺, +) be an infinite group with the identity 0 and 𝐻 be an infinite subgroup of  𝐺. Suppose 𝜏𝑝  and 𝜏𝑝𝐻
be the left 

invariant topologies on 𝐺 and 𝐻 induced by an idempotent 𝑝 of 𝐺∗ ∩ �̂�and 𝑝𝐻 of  𝐻∗ respectively. Then 𝜏𝑝𝐻
 is the subspace topology 

of  𝐺 on 𝐻, ie  (𝜏𝑝)𝐻 = 𝜏𝑝𝐻
 . 

Proof : Suppose  𝜙 = { 𝑈 ⊆ 𝐺:  𝐴 ∩ 𝑈 ≠ ∅ ∀ 𝐴 ∈ 𝑝}. Then from theorem 1.22,  �̃� = {𝑈 ⊆ 𝐺: {𝑥 ∈ βG: 𝑥 + 𝑝 = 𝑝} ⊆ 𝑐𝑙𝛽𝐺𝑈} is a 

filter base for neighbourhoods of 0 in 𝐺 with respect to the topology 𝜏𝑝 . Therefore �̃�|𝐻 = {𝑈 ∩ 𝐻: 𝑈 ⊆ 𝐺 𝑎𝑛𝑑 {𝑥 ∈ βG: 𝑥 + 𝑝 =

𝑝} ⊆ 𝑐𝑙𝛽𝐺𝑈} is a filter base for neighbourhoods of 0 in 𝐻 with respect to the subspace topology. Now, if  𝐾 ∈ �̃�|𝐻 , then 𝐾 =  𝑈 ∩ 𝐻 

for some 𝑈 ⊆ 𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  {𝑥 ∈ βG: 𝑥 + 𝑝 = 𝑝} ⊆ 𝑐𝑙𝛽𝐺𝑈. Suppose 𝑥 ∈ βH  be such that 𝑥 + 𝑝𝐻 = 𝑝𝐻. Then 𝑥 + 𝑝 = 𝑝, where 𝑥 ∈

Ĥ . So {𝑥 ∈ βH: 𝑥 + 𝑝𝐻 = 𝑝𝐻} ⊆ {𝑥 ∈ βG: 𝑥 + 𝑝 = 𝑝}. Again 𝑐𝑙𝛽𝐻𝐾 =  𝑐𝑙𝛽𝐻(𝑈 ∩ 𝐻) =  𝑐𝑙𝛽𝐺𝑈 ∩ 𝛽𝐻 . So {𝑥 ∈ βH: 𝑥 + 𝑝𝐻 = 𝑝𝐻} ⊆

 𝑐𝑙𝛽𝐻𝐾. Therefore  𝐾 ∈ �̃�, where �̃�  is the filter base for neighbourhoods of 0 in 𝐻 with respect to the topology 𝜏𝑝𝐻
 induced by the 

idempotent 𝑝𝐻 on 𝐻. So �̃�|𝐻 ⊆ �̃�. Therefore (𝜏𝑝)𝐻 ⊆ 𝜏𝑝𝐻
. 

Again, if �̃�  is the filter base for neighbourhoods of 0 in 𝐻 with respect to the topology 𝜏𝑝𝐻
 induced by the idempotent 𝑝𝐻 on 𝐻 

then from theorem 1.22, for any 𝐾 = 𝑈 ∩ 𝐺 ∈ �̃�, {𝑥 ∈ βH: 𝑥 + 𝑝𝐻 = 𝑝𝐻} ⊆  𝑐𝑙𝛽𝐻𝐾. This implies {𝑥 ∈ βG: 𝑥 + 𝑝 = 𝑝} = 𝛽𝐺 ∩

{𝑥 ∈ βG: 𝑥 + 𝑝𝐻 = 𝑝𝐻}  ⊆  𝑐𝑙𝛽𝐺𝐾 ∩ 𝛽𝐻 = 𝑐𝑙𝛽𝐺𝑈 ∩ 𝛽𝐻 . This implies 𝑈 ∈  �̃�. So �̃� ⊆  �̃�|𝐻. Consequently 𝜏𝑝𝐻
⊆  (𝜏𝑝)𝐻. Hence  

(𝜏𝑝)𝐻 = 𝜏𝑝𝐻
. 

From theorem 1.22 and theorem 2.4 we can conclude the main result: 

Corollary 2.5 Let  𝐻 be an infinite subgroup of  (𝐺, +) and 𝑝 be an idempotent in  𝐺∗ ∩ �̂�. If (𝜌𝑝)
|𝐺

: 𝐺 → 𝐺∗ and (𝜌𝑝𝐻
)

|𝐻
: 𝐻 → 𝐺∗ 

are the right translations respectively on 𝐺 and 𝐻 with respect to 𝑝 and 𝑝𝐻 then the subspace of the weak topology on 𝐺 induced by 

(𝜌𝑝)
|𝐺

: 𝐺 → 𝐺∗ on 𝐻 is same as the weak topology on 𝐻 induced by (𝜌𝑝𝐻
)

|𝐻
: 𝐻 → 𝐺∗. 

Definition 2.6 For a discrete semigroup (𝑆,⋅) if 𝑝, 𝑞 ∈ 𝐸(𝛽𝑆), the set of idempotents of 𝛽𝑆 then define 

(a) 𝑝 ≤𝐿 𝑞  if 𝑝 = 𝑝 ⋅ 𝑞 

(b) 𝑝 ≤𝑅 𝑞  if 𝑝 = 𝑞 ⋅ 𝑝 

(c) 𝑝 ≤ 𝑞  if 𝑝 = 𝑝 ⋅ 𝑞 = 𝑞 ⋅ 𝑝 

Theorem 2.7 For any group (𝐺, +) and for any two idempotents 𝑝  and 𝑞  in 𝛽𝐺 the following statements are equivalent: 

(a) 𝑝 ≤𝐿 𝑞   

(b) The function  𝜓 = (𝜌𝑝)
|𝐺

((𝜌𝑞)
|𝐺

)
−1

∶ 𝑞 + 𝐺 → 𝑝 + 𝐺 is continuous. 

(c) The topology induced on 𝐺 by (𝜌𝑞)
|𝐺

  is finer than that one induced by (𝜌𝑝)
|𝐺

 . 

Proof: (a) ⇒ (b):For any 𝑔 ∈ 𝐺, suppose {𝑞 + 𝑔𝛼}𝛼∈Λ be any net converging to 𝑞 + 𝑔.  Then   {𝑝 + 𝑔𝛼}𝛼∈Λ   = {𝑝 + 𝑞 + 𝑔𝛼}𝛼∈Λ  

converges to 𝑝 + 𝑞 + 𝑔 = +𝑔 . So 𝜓 is continuous at 𝑞 + 𝑔. 

(b) ⇒ (a): Suppose 𝜓 is continuous. Then 𝑝 =  𝜓(𝑞) =  𝜓(𝑞 + 𝑞) = lim
𝑔→𝑞

𝜓(𝑞 + 𝑔) = lim
𝑔→𝑞

(𝑝 + 𝑔) = 𝑝 + 𝑞 implies  𝑝 ≤𝐿 𝑞 . 
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(b) ⇒ (c): Given that  𝜓 = (𝜌𝑝)
|𝐺

((𝜌𝑞)
|𝐺

)
−1

 is continuous. Suppose 𝜏𝑞 be the topology on G induced by (𝜌𝑞)
|𝐺

. Then (𝜌𝑝)
|𝐺

= 𝜓 ∘

 (𝜌𝑞)
|𝐺

 is also a continuous mapping from 𝐺  to 𝑝 + 𝛽𝐺. Since the topology 𝜏𝑝 induced by (𝜌𝑝)
|𝐺

 is the weakest topology for which 

(𝜌𝑝)
|𝐺

 is continuous, 𝜏𝑞 is finer than 𝜏𝑝 . 

(c) ⇒ (b): This is obvious.   

Corollary 2.8  Suppose 𝐻 be an infinite subgroup of a group (𝐺, +) and 𝑝  and 𝑞 are two idempotents  in 𝐺∗ ∩ �̂�. Then the topology 

induced on 𝐺 by (𝜌𝑞)
|𝐺

  is finer than that one induced by (𝜌𝑝)
|𝐺

 if and only if the topology induced on 𝐻 by (𝜌𝑞𝐻
)

|𝐻
  is finer than that 

one induced by (𝜌𝑝𝐻
)

|𝐻
. 

Proof: Since 𝑝  and 𝑞 are two idempotents  in 𝐺∗ ∩ �̂�, 𝑝𝐻  and 𝑞𝐻 are two idempotents  in 𝐻∗.  

Suppose the topology induced on 𝐺 by (𝜌𝑞)
|𝐺

  is finer than that one induced by (𝜌𝑝)
|𝐺

. Then from theorem 2.7 𝑝 ≤𝐿 𝑞 in 𝐸(𝛽𝐺). 

Therefore 𝑝 = 𝑝 + 𝑞. From theorem 1.9 𝑝𝐻 = 𝑝𝐻 + 𝑞𝐻 in 𝛽𝐻 . This implies 𝑝𝐻 ≤𝐿 𝑞𝐻 in 𝐸(𝛽𝐻 ). Again from theorem 2.7 the 

topology induced on 𝐻 by (𝜌𝑞𝐻
)

|𝐻
  is finer than that one induced by (𝜌𝑝𝐻

)
|𝐻

. The converse part can be proved in a similar way. 
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