

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Left Invariant Topology on a Subgroup of a Group G Defined by Idempotents of G^{*} Gopal Adak

Department of Mathematics, St. Paul's Cathedral Mission College

33/1 Raja Rammohan Roy Sarani, Kolkata-9, West Bengal, India

adakgostpaul@gmail.com

Abstract: The Stone - Čech compactification βS of a discrete semigroup S is the set of ultrafilters on S on which the binary operation can be extended uniquely making it a compact right topological semigroup. The idempotent elements in βS have some extra ordinary algebraic structures which are applied in combinatorial problems, especially in Ramsey theory. The idempotent elements of βS , which are not in S induced a topology on the group S which are left invariant. In this paper we study subspace topology on a subgroup T of this left invariant topological semigroup and topology induced by idempotent in the Stone - Čech compactification βT .

2010 Mathematics Subject Classification: 54D35, 54D80, 54F05.

Key words: Stone - Čech compactification, ultrafilter, compact right topological semigroup, left invariant topology, idempotent.

1 Introduction:

Given a nonempty set X, a family \mathfrak{F} of subsets of X will be a filter on X if $\emptyset \notin \mathfrak{F}$, $A \cap B \in \mathfrak{F}$ when $A, B \in \mathfrak{F}$ and if $A \in \mathfrak{F}$ \mathfrak{F} and $A \subseteq B$ then $B \in \mathfrak{F}$. A filter \mathfrak{U} is called an ultrafilter on X if \mathfrak{U} is not properly contained in any filter. An ultrafilter \mathfrak{U} which contains a singletone set $\{x_0\}$ as a member is called a principal ultrafilter. We denote this ultrafilter by x_0 . For a principal ultrafilter \mathfrak{U} , $\cap \mathfrak{U}$ = singletone set. For further studies on ultrafilters we refer [3]. A compactification of a space X is a compact Hausdorff space Y such that there is a topological embedding $e: X \to Y$ with e(X) dense in Y. Whereas the Stone - Čech compactification of a Tychonoff space X is a compactification βX having the property that: if $f: X \to Y$ is a continuous function on any compact Hausdorff space Y then there is a unique continuous function $\tilde{f}:\beta X \to Y$ with $\tilde{f}|_X = f$. The Stone - Čech compactification of a Tychonoff space X taking maximal Z-ideals of X as points has been studied in [6] which is equivalent for a discrete space X by taking all its ultrafilters. For a discrete semigroup (S, \cdot) its Stone - Čech compactification βS consisting of all ultrafilters of S is topologized by taking the collection $\{\hat{A}: A \subseteq S\}$ as a base for the topology on βS , where $\hat{A} = \{p \in \beta S: A \in p\}$. It is a routine matter to check that the above mentioned base is a base for the closed sets also. Thus the Stone - Čech compactification βS of a discrete semigroup S is a zero- dimensional space. We can identify each element $s \in S$ with a principal ultrafilter, so that $S \subseteq \beta S$. Then the semigroup operation \cdot on S can be extended to a binary operation on βS as follows: for $s \in S$, $q \in \beta S$, $s \cdot q = \lambda_s(q)$ where $\lambda_s : \beta S \to \beta S$ is the continuous extension of $\lambda_s: S \to S \subseteq \beta S$ defined by $\lambda_s(x) = s \cdot x$. Now for $p, q \in \beta S$, $p \cdot q = \widetilde{\rho_q}(q)$, where $\widetilde{\rho_q}: \beta S \to \beta S$ is the continuous extension of $\rho_a: S \to \beta S$ defined by $\rho_a(x) = x \cdot q$ and $(\beta S, \cdot)$ is also a semigroup. Also it is a compact right topological (follows form [2]) semigroup. From Elli's theorem [2] it is clear that $(\beta S, \cdot)$ contains an idempotent element.

© 2022 JETIR October 2022, Volume 9, Issue 10

www.jetir.org (ISSN-2349-5162)

We can use the following definitions and results from semigroup theory. In a semigroup (S, \cdot) an element $x \in S$ is said to be invertible if there is(unique) $x' \in S$ such that x = xx'x and x' = x'xx' and xx' = x'x. The element xx' is an idempotent element denoted by x^0 . A subset $I \subseteq S$ is a left(right) ideal of S if $SI \subseteq S$ ($IS \subseteq S$). It is called an ideal if it is both left and right ideal of S. Using Zorn's lemma we can say that every left (right) ideal contains a minimal left(right) ideal. The smallest ideal (if exists) of a semigroup (S, \cdot) is denoted by K(S) and it is the intersection of a minimal left ideal and a mainimal right ideal. The set of idempotents of S is denoted by E(S).

If (S, \cdot) is a semigroup with a topology τ then its topological center is $\Lambda(S) = \{a \in S : \lambda_a \text{ is a continuos mapping}\}$. For the Stone - Čech compactification of a discrete semigroup $(S, \cdot), S \subseteq \Lambda(S)$.

A topological semigroup (S, τ) is a pair where S is a semigroup, τ is a topology on S and the binary operation is continuous. It is a topological inverse semigroup if S is an inverse semigroup and the map $x \to x'$ is continuous. In a topological semigroup (S, τ) the closure of any (left, right) ideal is also an (left, right) ideal.

A homomorphism between two semigroups *S* and *T* is a mapping $\psi: S \to T$ satisfying $\psi(ab) = \psi(a)\psi(b)$. If it is bijective then it is an isomorphism. An isomorphism : $S \to T$, where *S* and *T* are semigroups endowed with topologies is called a topological isomorphism if it is a homeomorphism also. Henceforth we will consider the discrete topology on the semigroup (S, \cdot) .

Definition 1.1 Suppose (S, \cdot) is a discrete inverse semigroup, $A \subseteq S$ and $p \in \beta S$. Define $A^{-1} = \{x': x \in A\}, p' = \{A^{-1} \subseteq S : A \in p\}$.

Obviously $(A^{-1})^{-1} = A$ and (p')' = p.

Proposition 1.2 $p \in \beta S$ if and only if $p' \in \beta S$.

Proof: Suppose $p \in \beta S$. Clearly then $\emptyset \notin p'$. Now if $A, B \in p'$ then $A^{-1}, B^{-1} \in p$. p being an ultrafilter, $A^{-1} \cap B^{-1} \in p$. Then $(A \cap B) = (A^{-1} \cap B^{-1})^{-1} \in p'$. Again if $A \in p'$ and $A \subseteq B$ then $A^{-1} \subseteq B^{-1}$ implies $B^{-1} \in p$ implies $B \in p'$. So p' is a filter on S. Suppose \mathfrak{F} be a filter such that $p' \subseteq \mathfrak{F}$. Then $p = (p')' \subseteq \mathfrak{F}'$. Since p is an ultrafilter, $\mathfrak{F}' = p$ and hence $p' = \mathfrak{F}$.

Definition 1.3 Suppose (S, \cdot) is a discrete semigroup, $Y(\subseteq S)$ is a subsemigroup of S. For $p \in \beta S \cap \hat{Y}$, we define, $p_Y = \{A \cap Y : A \in p\}$.

Proposition 1.4 p_Y is an ultrafilter on Y and hence $p_Y \in \beta Y$.

Proof: Since $Y \in p$, $A \cap Y \neq \emptyset$ for all $A \in p$. Suppose $B \in p_Y$ and $B \subseteq C \subseteq Y$. Then $B = B_1 \cap Y$ for some $B_1 \in p$. Then there is some $C_1 \supseteq B_1$ such that $C = C_1 \cap Y$. Clearly then $C_1 \in p$ and so $C \in p_Y$. Now if $A, B \in p_Y$ then $A = A_1 \cap Y, B = B_1 \cap Y$, for some $A_1, B_1 \in p$. p being an ultrafilter, $A_1 \cap B_1 \in p$. Then $(A \cap B) = (A_1 \cap B_1) \cap Y \in p_Y$ implies p_Y is a filter on Y. Suppose $\mathfrak{F}_1 = \{A \subseteq S : A \cap Y \in \mathfrak{F}\}$ is a filter on S containing p. Since p is an ultrafilter, $\mathfrak{F}_1 = p$. Then $p_Y = \mathfrak{F}$, which implies p_Y is an ultrafilter on Y.

Definition 1.5 For a subsemigroup *T* of the semigroup (S, \cdot) the set $\{p_T: p \in \beta S\}$ is a set of ultrafilters on *T* which will be denoted by $\beta_S T$.

Proposition 1.6 For a subsemigroup *T* of the semigroup (S, \cdot) , $card(\beta_S T) = card(\beta S \cap \hat{T})$.

Proof: Suppose $f: \beta S \cap \hat{T} \to \beta_S T$ be defined by $f(p) = p_T, \forall p \in \beta S \cap \hat{T} \dots \dots \dots (1)$.

We shall show that f is a bijection. Suppose $p, q \in \beta S \cap \hat{T}$ and $p \neq q$. Then there is some $A \in p$ such that $A \notin q$. Then $A \cap T \in p_T$ but $A \cap T \notin q_T$ showing that f is injective. Again if $r \in \beta_S T$ then $r_S = \{A \subseteq S : A \cap T \in r\}$ is an ultrafilter in S and $(r_S)_T = r$. So f is an onto mapping.

Theorem 1.7 If *T* is a subsemigroup of a discrete semigroup *S* then the mapping $f:\beta S \cap \hat{T} \to \beta_S T (\subseteq \beta T)$ as defined in (1) of proposition 1.6 is a homeomorphism.

Proof: Using proposition 1.6, to prove the theorem it is only to show that *f* is a continuous open map.

If $p \in \beta S \cap \hat{T}$ and $p_T \in \hat{U} \subseteq \beta_S T$ then $U \in p_T$ and so $U = A \cap T$, for some $A \in p$. Clearly then $\hat{A} \cap \hat{T}$ is an open neighbourhood of p and $f(\hat{A} \cap \hat{T}) \subseteq \hat{U}$ implies that f is continuous at p. Now if $\hat{A} \cap \hat{T}$ is an open set in $\beta S \cap \hat{T}$ then $f(\hat{A} \cap \hat{T}) = (A \cap T)_{\beta T}$ is an open set in βT implies f is an open map.

Henceforth we use the symbol \hat{T} *for* $\beta S \cap \hat{T}$ *.*

From the above theorem (1.7) it is clear that \hat{T} is topologically embedded in $\beta_S T$.

Notation: For a subset *A* of a semigroup (S, \cdot) if $s \in S$ then

(a)
$$s^{-1}A = \{t \in S : s \cdot t \in A\}$$

(b) $A s^{-1} = \{t \in S : t \cdot s \in A\}.$

The following theorem follows from the continuity of λ_s and ρ_a .

Theorem 1.8[1] For a discrete semigroup (S, \cdot) if $x \in S$, $p, q \in \beta S$ then

(a) $x \cdot p = \{A \subseteq S : x^{-1}A \in p\}$

(b) $p \cdot q = \{A \subseteq S : \{x \in S : x^{-1}A \in q\} \in p\}.$

Theorem 1.9 Suppose T be a sub semigroup of the discrete semigroup (S, \cdot) , $x \in T$, $p, q \in \hat{T}$. Let \star be the binary operation on βT extended from \cdot on T. Then

- (a) $(x \cdot p)_T = x \star p_T$
- (b) $(p \cdot q)_T = p_T \star q_T$

Proof : (a) Since $T \in p$, $x \cdot T \in x \cdot p$. Also $T \supseteq x \cdot T$. This implies $T \in x \cdot p$.

(b) Suppose $A \in (p \cdot q)_T$. Then $A = B \cap T$ for some $B \in p.q$. Let $C = \{x \in S : x^{-1}B \in q\}$. Then $C \in p$. Now for any $x \in T \cap C$, $x^{-1}A \in q_T$ implies $\{x \in T : x^{-1}A \in q_T\} \in p_T$. Hence $A \in p_T \star q_T$. Consequently $(p \cdot q)_T = p_T \star q_T$

Definition 1.10 A topology τ on a semigroup (S, \cdot) is called a right(left) invariant topology if for every $U \in \tau$ and every $a \in S$, $Ua = \{u \cdot a : u \in U\} \in \tau$ $(aU \in \tau)$. A topology is called invariant if it is both left and right invariant.

From the definition, it is clear that, if τ on a group (S, \cdot) is a right(left) invariant topology then (S, \cdot) is a right(left) topological group. Indeed we get stronger relation as follows from the theorem:

Theorem 1.11 A topology τ on a group (G, \cdot) is left invariant if and only if for every $a \in G$, λ_a is a homeomorphism, where $\lambda_a: G \to G$ is defined by $\lambda_a(g) = a \cdot g \,\forall g \in G$.

Proof: If τ is left invariant then for each $a \in G$ and each open set U, $\lambda_a(U) = aU$ is open implies λ_a is an open map. Again for any open set U of G, $\lambda_a^{-1}(U) = a^{-1}U$ is also open showing that λ_a is continuous. λ_a being a bijective mapping, it is a homeomorphism. Conversely, suppose λ_a is a homeomorphism. Then τ is left invariant follows from the fact that λ_a is an open mapping.

For constructions of left invariant topologies on an infinite group we use the following definitions from [1].

Definition 1.12 If G is a discrete group with identity e and $C \subseteq G^*$ is a finite subsemigroup then define

(a) $\tilde{C} = \{x \in \beta G : xC \subseteq C\}.$

- (b) ϕ is the filter of subsets U of G for which $C \subset cl(U)$.
- (c) $\tilde{\phi}$ is the filter of subsets U of G for which $\tilde{C} \subset cl(U)$.

It is clear that \tilde{C} is a semigroup and $e \in \tilde{C}$. Also $\phi = \cap C$ and $\tilde{\phi} = \cap \tilde{C}$.

Definition 1.13 Suppose ϕ and $\tilde{\phi}$ are defined as in Definition 1.12. For any $U \in \phi$, let $\tilde{U} = \{a \in G : aC \subseteq cl(U)\}$.

Then $e \in \tilde{U} \in \tilde{\phi}$ and the family $\{\tilde{U}: U \in \phi\}$ is a base for the filter $\tilde{\phi}$.

It can be easily verified that the family $\mathfrak{B} = \{a \ \widetilde{U} : a \in G, U \in \phi\}$ is a base for some topology on *G*.

Theorem 1.14 [1] For any discrete group (G, \cdot) there is a left invariant topology generated by \mathfrak{B} , as defined in Def 1.13 on *G* for which $\tilde{\phi}$ is the filter of neighbourhoods of *e*. Furthermore, *G* will be zero dimensional if xC = C for every $x \in \tilde{C}$,

Theorem 1.15 [1] If xC = C for every $x \in \tilde{C}$, then the following are equivalent: (a) The topology defined in Theorem 1.14 is Hausdorff. (b) $\{x \in G : xC \subseteq C\} = \{e\}$. (c) $\{e\} = \cap \tilde{\phi}$.

Theorem 1.16 [1] If *G* has no nontrivial finite subgroup, then $\cap \tilde{\phi} = \{e\}$.

Example 1.17 Suppose *p* be an idempotent in \mathbb{Q}^* . Define $\tilde{C}_p = \{x \in \beta \mathbb{Q} : x + p = p\}$. Then $\phi = \{U \subseteq \mathbb{Q} : A \cap U \neq \emptyset$ for all $A \in p\}$ from the properties of an ultrafilter. Now, for any $U \in \phi$, $\tilde{U} = \{r \in \mathbb{Q} : r + p \in cl(U)\} = \{r \in \mathbb{Q} : (-r + A) \cap U \neq \emptyset$ for all $A \in p\}$. The family $\{a + \tilde{U} : a \in \mathbb{Q}, U \in p\}$ is a base for the left invariant topology on \mathbb{Q} generated by the idempotent *p*. As \mathbb{Q} is commutative under addition, it follows immediately that the topology is an invariant topology on \mathbb{Q} .

From Theorem 1.14 and 1.15 the following theorem follows immediately:

Theorem 1.18 If G is a discrete group with identity e, there is a left invariant topology on G with a basis of clopen sets such that $\tilde{\phi}$ is the filter of neighbourhoods of e. Further more this topology is Hausdorff if G has no nontrivial finite subgroups.

Definition 1.19 [6] A topological space is said to be extremally disconnected if closure of every open set is open.

Theorem 1.20[6] If *S* is a discrete space then βS is extremally disconnected.

Lemma 1.21[1] For a discrete semigroup (S, \cdot) if p is an idempotent in βS then $S \cdot p$ is extremally disconnected subspace of βS .

Theorem 1.22 [1] Suppose p be an idempotent in S^* where (S, +) is an infinite discrete group with the identity 0. Then there is a left invariant zero dimensional Hausdorff topology on S such that the filter $\tilde{\phi}$ of neighbourhoods of 0 consists of $U(\subseteq S)$ for which $\{x \in \beta S: x + p = p\} \subseteq cl_{\beta S}U$. This topology is extremally disconnected and is the same as the weak topology on S induced by the mapping $(\rho_p)_{|S}: S \to S^*$. Furthermore, if $(\rho_p)_{|S}$ and $(\rho_q)_{|S}$ induce the same topology on S then $p + \beta S = q + \beta S$.

The topology as in Theorem 1.22 is called the left invariant topology on S induced by the idempotent p and will be denoted by τ_v .

2. Topology on a subgroup of a discrete group G induced by the idempotents

In this section we study the left invariant topologies induced on the subgroup (H, +) by idempotents in H^* by two ways. One is by the subspace topology of *G* which is induced by an idempotent element *p* of G^* and the other is the right invariant topology on *H* induced by the idempotent p_H of H^* .

Theorem 2.1 Let (G, \cdot) be a group endowed with a left invariant topology τ . Then any subgroup *H* of the group (G, \cdot) is also left invariant with respect to the subspace topology of τ .

Proof: Suppose $U \in \tau_H$, the subspace topology on H and $a \in H$. Then $U = V \cap H$ for some $V \in \tau$. Since τ is left invariant $a \cdot V \in \tau$. We first show that $a \cdot U = (a \cdot V) \cap H$. Clearly $a \cdot U \subseteq (a \cdot V) \cap H$. Suppose $x \in (a \cdot V) \cap H$. Then $x = a \cdot v$ for some $v \in V$. This implies $v = a^{-1} \cdot x \in H$. Thus $v \in V \cap H$ showing that $x \in a \cdot (V \cap H)$ which implies $(a \cdot V) \cap H \subseteq a \cdot U$. Consequently $a \cdot U = (a \cdot V) \cap H$ and so $a \cdot U \in \tau_H$.

Theorem 2.2 Let (Y, σ) be a topological space and τ be the topology on X induced by the mapping $f: X \to Y$. Let S be a nonempty subset of X. Then the subspace topology of τ on S is same as the topology induced by $f|_S: S \to Y$ on S.

Proof: Suppose *U* be a basic open set of (S, τ_S) , the subspace topology on *S*. Then $U = V \cap S$ for some basic open set $V \in \tau$. Since τ is induced by the mapping $f: X \to Y$, $V = \bigcap_{i=1}^{n} f^{-1}(W_i)$, for some $W_i \in \sigma$ and for some $n \in \mathbb{N}$. Then $U = (\bigcap_{i=1}^{n} f^{-1}(W_i)) \cap S = \bigcap_{i=1}^{n} (f^{-1}(W_i) \cap S) = \bigcap_{i=1}^{n} f|_{S}^{-1}(W_i)$, which implies that *U* is a basic open set with respect to the topology induced by $f|_{S}: S \to Y$ on *S*. Again if *U* is a basic open set with respect to the topology induced by $f|_{S}: S \to Y$ on *S*, then $U = \bigcap_{i=1}^{n} f|_{S}^{-1}(W_i) = \bigcap_{i=1}^{n} (f^{-1}(W_i) \cap S) = (\bigcap_{i=1}^{n} f^{-1}(W_i)) \cap S = V \cap S$ where $V = \bigcap_{i=1}^{n} f^{-1}(W_i)$ is a basic open set of τ . Consequently the subspace topology of τ on *S* is same as the topology induced by $f|_{S}: S \to Y$ on *S*.

Theorem 2.3 Let (G, +) be an infinite group with the identity 0 and *H* be an infinite subgroup of *G*. Then $p \in G^* \cap \hat{H}$ is an idempotent element of βG if and only if p_H (as defined by definition 1.3) is an idempotent element of $\beta H \setminus H$.

Proof: Suppose p be an idempotent element of βG . Since $p \in G^*$, p is not a principal ultrafilter and so p_H is a non principal ultrafilter of βH . Then from Theorem 1.9 $p_H = (p + p)_H = p_H + p_H$, it follows that p_H is an idempotent element of $\beta H \setminus H$.

Conversely, let p_H be an idempotent element of $\beta H \setminus H$. Then $p \in G^*$ and $(p + p)_H = p_H + p_H = p_H$. Then from Proposition 1.6 it follows that p + p = p. Consequently $p \in G^* \cap \hat{H}$ is an idempotent element of βG .

Theorem 2.4 Let (G, +) be an infinite group with the identity 0 and *H* be an infinite subgroup of *G*. Suppose τ_p and τ_{p_H} be the left invariant topologies on *G* and *H* induced by an idempotent *p* of $G^* \cap \hat{H}$ and p_H of H^* respectively. Then τ_{p_H} is the subspace topology of *G* on *H*, ie $(\tau_p)_H = \tau_{p_H}$.

Proof : Suppose $\phi = \{U \subseteq G : A \cap U \neq \emptyset \forall A \in p\}$. Then from theorem 1.22, $\tilde{\phi} = \{U \subseteq G : \{x \in \beta G : x + p = p\} \subseteq cl_{\beta G}U\}$ is a filter base for neighbourhoods of 0 in *G* with respect to the topology τ_p . Therefore $\tilde{\phi}|_H = \{U \cap H : U \subseteq G \text{ and } \{x \in \beta G : x + p = p\} \subseteq cl_{\beta G}U\}$ is a filter base for neighbourhoods of 0 in *H* with respect to the subspace topology. Now, if $K \in \tilde{\phi}|_H$, then $K = U \cap H$ for some $U \subseteq G$ such that $\{x \in \beta G : x + p = p\} \subseteq cl_{\beta G}U$. Suppose $x \in \beta H$ be such that $x + p_H = p_H$. Then x + p = p, where $x \in \hat{H}$. So $\{x \in \beta H : x + p_H = p_H\} \subseteq \{x \in \beta G : x + p = p\}$. Again $cl_{\beta H}K = cl_{\beta H}(U \cap H) = cl_{\beta G}U \cap \beta H$. So $\{x \in \beta H : x + p_H = p_H\} \subseteq cl_{\beta H}K$. Therefore $K \in \tilde{\psi}$, where $\tilde{\psi}$ is the filter base for neighbourhoods of 0 in *H* with respect to the topology τ_{p_H} induced by the idempotent p_H on *H*. So $\tilde{\phi}|_H \subseteq \tilde{\psi}$. Therefore $(\tau_p)_H \subseteq \tau_{p_H}$.

Again, if $\tilde{\psi}$ is the filter base for neighbourhoods of 0 in *H* with respect to the topology τ_{p_H} induced by the idempotent p_H on *H* then from theorem 1.22, for any $K = U \cap G \in \tilde{\psi}$, $\{x \in \beta H: x + p_H = p_H\} \subseteq cl_{\beta H}K$. This implies $\{x \in \beta G: x + p = p\} = \beta G \cap \{x \in \beta G: x + p_H = p_H\} \subseteq cl_{\beta G}K \cap \beta H = cl_{\beta G}U \cap \beta H$. This implies $U \in \tilde{\phi}$. So $\tilde{\psi} \subseteq \tilde{\phi}|_H$. Consequently $\tau_{p_H} \subseteq (\tau_p)_H$. Hence $(\tau_p)_H = \tau_{p_H}$.

From theorem 1.22 and theorem 2.4 we can conclude the main result:

Corollary 2.5 Let *H* be an infinite subgroup of (G, +) and *p* be an idempotent in $G^* \cap \widehat{H}$. If $(\rho_p)_{|G}: G \to G^*$ and $(\rho_{p_H})_{|H}: H \to G^*$ are the right translations respectively on *G* and *H* with respect to *p* and *p_H* then the subspace of the weak topology on *G* induced by $(\rho_p)_{|G}: G \to G^*$ on *H* is same as the weak topology on *H* induced by $(\rho_{p_H})_{|H}: H \to G^*$.

Definition 2.6 For a discrete semigroup (S, \cdot) if $p, q \in E(\beta S)$, the set of idempotents of βS then define

(a) $p \leq_L q$ if $p = p \cdot q$

(b) $p \leq_R q$ if $p = q \cdot p$

(c) $p \le q$ if $p = p \cdot q = q \cdot p$

Theorem 2.7 For any group (G, +) and for any two idempotents p and q in βG the following statements are equivalent:

- (a) $p \leq_L q$
- (b) The function $\psi = (\rho_p)_{|G} ((\rho_q)_{|G})^{-1} : q + G \to p + G$ is continuous.

(c) The topology induced on G by $(\rho_q)_{|G|}$ is finer than that one induced by $(\rho_p)_{|G|}$.

Proof: (a) \Rightarrow (b):For any $g \in G$, suppose $\{q + g_{\alpha}\}_{\alpha \in \Lambda}$ be any net converging to q + g. Then $\{p + g_{\alpha}\}_{\alpha \in \Lambda} = \{p + q + g_{\alpha}\}_{\alpha \in \Lambda}$ converges to p + q + g = +g. So ψ is continuous at q + g.

(b) \Rightarrow (a): Suppose ψ is continuous. Then $p = \psi(q) = \psi(q+q) = \lim_{g \to q} \psi(q+g) = \lim_{g \to q} (p+g) = p+q$ implies $p \leq_L q$.

(b) \Rightarrow (c): Given that $\psi = (\rho_p)_{|G} ((\rho_q)_{|G})^{-1}$ is continuous. Suppose τ_q be the topology on G induced by $(\rho_q)_{|G}$. Then $(\rho_p)_{|G} = \psi \circ (\rho_q)_{|G}$ is also a continuous mapping from G to $p + \beta G$. Since the topology τ_p induced by $(\rho_p)_{|G}$ is the weakest topology for which $(\rho_p)_{|G}$ is continuous, τ_q is finer than τ_p .

(c) \Rightarrow (b): This is obvious.

Corollary 2.8 Suppose *H* be an infinite subgroup of a group (G, +) and *p* and *q* are two idempotents in $G^* \cap \hat{H}$. Then the topology induced on *G* by $(\rho_q)_{|G}$ is finer than that one induced by $(\rho_p)_{|G}$ if and only if the topology induced on *H* by $(\rho_{q_H})_{|H}$ is finer than that one induced by $(\rho_p)_{|G}$.

Proof: Since p and q are two idempotents in $G^* \cap \widehat{H}$, p_H and q_H are two idempotents in H^* .

Suppose the topology induced on *G* by $(\rho_q)_{|G}$ is finer than that one induced by $(\rho_p)_{|G}$. Then from theorem 2.7 $p \leq_L q$ in $E(\beta G)$. Therefore p = p + q. From theorem 1.9 $p_H = p_H + q_H$ in βH . This implies $p_H \leq_L q_H$ in $E(\beta H)$. Again from theorem 2.7 the topology induced on *H* by $(\rho_{q_H})_{|H}$ is finer than that one induced by $(\rho_{p_H})_{|H}$. The converse part can be proved in a similar way.

References:

- 1. N. Hindman and D. Strauss, Algebra in the Stone- Čech compactification, W. de Gruyter, Berlin, 1998.
- 2. R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
- 3. W. Comfort and S. Negrepontis, the theory of ultrafilters, Springer-Verlag, Berlin, 1974.
- 4. N. Hindman, D. Strauss and I. Protasov, Topologies on S determined by idempotents of βS , Topology Proc. 23 (1998), 155-190.
- 5. Y. Zelenyuk, Topologies on groups determined by discrete subsets, Topology Applications 155(2008),1332-1339
- 6. L. Gillman and M. Jerison, Rings of continuous functions, van Nostrand, Princeton, 1960

